Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.436
1.
Front Immunol ; 15: 1386719, 2024.
Article En | MEDLINE | ID: mdl-38694510

Introduction: B-cell activation triggers the release of endoplasmic reticulum calcium stores through the store-operated calcium entry (SOCE) pathway resulting in calcium influx by calcium release-activated calcium (CRAC) channels on the plasma membrane. B-cell-specific murine knockouts of SOCE do not impact humoral immunity suggesting that alternative channels may be important. Methods: We identified a member of the calcium-permeable transient receptor potential (TRP) ion channel family, TRPV5, as a candidate channel expressed in B cells by a quantitative polymerase chain reaction (qPCR) screen. To further investigate the role of TRPV5 in B-cell responses, we generated a murine TRPV5 knockout (KO) by CRISPR-Cas9. Results: We found TRPV5 polarized to B-cell receptor (BCR) clusters upon stimulation in a PI3K-RhoA-dependent manner. TRPV5 KO mice have normal B-cell development and mature B-cell numbers. Surprisingly, calcium influx upon BCR stimulation in primary TRPV5 KO B cells was not impaired; however, differential expression of other calcium-regulating proteins, such as ORAI1, may contribute to a compensatory mechanism for calcium signaling in these cells. We demonstrate that TRPV5 KO B cells have impaired spreading and contraction in response to membrane-bound antigen. Consistent with this, TRPV5 KO B cells have reduced BCR signaling measured through phospho-tyrosine residues. Lastly, we also found that TRPV5 is important for early T-dependent antigen specific responses post-immunization. Discussion: Thus, our findings identify a role for TRPV5 in BCR signaling and B-cell activation.


B-Lymphocytes , Calcium Signaling , Lymphocyte Activation , Mice, Knockout , Receptors, Antigen, B-Cell , TRPV Cation Channels , Animals , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Calcium/metabolism , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology , Signal Transduction , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
2.
Nat Immunol ; 25(5): 916-924, 2024 May.
Article En | MEDLINE | ID: mdl-38698238

B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.


B-Lymphocytes , Breast Neoplasms , Immunologic Surveillance , Humans , Female , Breast Neoplasms/immunology , B-Lymphocytes/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes/immunology , Monitoring, Immunologic , Exome Sequencing , Antigens, Neoplasm/immunology , Neoplasm Metastasis , Clone Cells
3.
Science ; 384(6695): eadj4857, 2024 May 03.
Article En | MEDLINE | ID: mdl-38696569

B lymphocytes are essential mediators of humoral immunity and play multiple roles in human cancer. To decode the functions of tumor-infiltrating B cells, we generated a B cell blueprint encompassing single-cell transcriptome, B cell-receptor repertoire, and chromatin accessibility data across 20 different cancer types (477 samples, 269 patients). B cells harbored extraordinary heterogeneity and comprised 15 subsets, which could be grouped into two independent developmental paths (extrafollicular versus germinal center). Tumor types grouped into the extrafollicular pathway were linked with worse clinical outcomes and resistance to immunotherapy. The dysfunctional extrafollicular program was associated with glutamine-derived metabolites through epigenetic-metabolic cross-talk, which promoted a T cell-driven immunosuppressive program. These data suggest an intratumor B cell balance between extrafollicular and germinal-center responses and suggest that humoral immunity could possibly be harnessed for B cell-targeting immunotherapy.


B-Lymphocytes , Germinal Center , Lymphocytes, Tumor-Infiltrating , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/therapy , Neoplasms/genetics , Lymphocytes, Tumor-Infiltrating/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Immunotherapy , Transcriptome , Single-Cell Analysis , Epigenesis, Genetic , Immunity, Humoral , T-Lymphocytes/immunology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology
4.
Nat Methods ; 21(5): 777-792, 2024 May.
Article En | MEDLINE | ID: mdl-38637691

Single-cell T cell and B cell antigen receptor-sequencing data analysis can potentially perform in-depth assessments of adaptive immune cells that inform on understanding immune cell development to tracking clonal expansion in disease and therapy. However, it has been extremely challenging to analyze and interpret T cells and B cells and their adaptive immune receptor repertoires at the single-cell level due to not only the complexity of the data but also the underlying biology. In this Review, we delve into the computational breakthroughs that have transformed the analysis of single-cell T cell and B cell antigen receptor-sequencing data.


B-Lymphocytes , Receptors, Antigen, B-Cell , Receptors, Antigen, T-Cell , Single-Cell Analysis , T-Lymphocytes , Single-Cell Analysis/methods , Humans , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Animals , Computational Biology/methods
5.
J Immunol ; 212(10): 1579-1588, 2024 May 15.
Article En | MEDLINE | ID: mdl-38557795

Abs are vital to human immune responses and are composed of genetically variable H and L chains. These structures are initially expressed as BCRs. BCR diversity is shaped through somatic hypermutation and selection during immune responses. This evolutionary process produces B cell clones, cells that descend from a common ancestor but differ by mutations. Phylogenetic trees inferred from BCR sequences can reconstruct the history of mutations within a clone. Until recently, BCR sequencing technologies separated H and L chains, but advancements in single-cell sequencing now pair H and L chains from individual cells. However, it is unclear how these separate genes should be combined to infer B cell phylogenies. In this study, we investigated strategies for using paired H and L chain sequences to build phylogenetic trees. We found that incorporating L chains significantly improved tree accuracy and reproducibility across all methods tested. This improvement was greater than the difference between tree-building methods and persisted even when mixing bulk and single-cell sequencing data. However, we also found that many phylogenetic methods estimated significantly biased branch lengths when some L chains were missing, such as when mixing single-cell and bulk BCR data. This bias was eliminated using maximum likelihood methods with separate branch lengths for H and L chain gene partitions. Thus, we recommend using maximum likelihood methods with separate H and L chain partitions, especially when mixing data types. We implemented these methods in the R package Dowser: https://dowser.readthedocs.io.


B-Lymphocytes , Phylogeny , Receptors, Antigen, B-Cell , Humans , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , B-Lymphocytes/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Single-Cell Analysis/methods , Mutation
6.
J Exp Med ; 220(4)2023 04 03.
Article En | MEDLINE | ID: mdl-36880536

The proper regulation of IgE production safeguards against allergic disease, highlighting the importance of mechanisms that restrict IgE plasma cell (PC) survival. IgE PCs have unusually high surface B cell receptor (BCR) expression, yet the functional consequences of ligating this receptor are unknown. Here, we found that BCR ligation induced BCR signaling in IgE PCs followed by their elimination. In cell culture, exposure of IgE PCs to cognate antigen or anti-BCR antibodies induced apoptosis. IgE PC depletion correlated with the affinity, avidity, amount, and duration of antigen exposure and required the BCR signalosome components Syk, BLNK, and PLCγ2. In mice with a PC-specific impairment of BCR signaling, the abundance of IgE PCs was selectively increased. Conversely, BCR ligation by injection of cognate antigen or anti-IgE depleted IgE PCs. These findings establish a mechanism for the elimination of IgE PCs through BCR ligation. This has important implications for allergen tolerance and immunotherapy as well as anti-IgE monoclonal antibody treatments.


Hypersensitivity , Plasma Cells , Animals , Mice , Apoptosis , Cell Nucleus , Cell Survival , Immunosuppressive Agents , Receptors, Antigen, B-Cell/immunology
7.
PLoS Pathog ; 19(1): e1011107, 2023 01.
Article En | MEDLINE | ID: mdl-36662906

Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.


Antibodies, Neutralizing , Antibodies, Viral , Cytomegalovirus Infections , Cytomegalovirus Vaccines , Cytomegalovirus , Humans , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/therapeutic use , Mutation , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
8.
J Neuroimmunol ; 370: 577932, 2022 09 15.
Article En | MEDLINE | ID: mdl-35853357

A significant proportion of multiple sclerosis (MS) patients treated with interferon beta-1a (Rebif™) develop anti-drug antibodies (ADA) with a negative impact on treatment efficacy. We hypothesized that high-throughput B-cell receptor (BCR) repertoire analysis could be used to predict and monitor ADA development. To study this we analyzed 228 peripheral blood samples from 68 longitudinally followed patients starting on interferon beta-1a. Our results show that whole blood BCR analysis does not reflect, and does not predict ADA development in MS patients treated with interferon beta-1a. We propose that BCR analysis of phenotypically selected cell subsets or tissues might be more informative.


Multiple Sclerosis , Antibodies/immunology , Humans , Interferon beta-1a/adverse effects , Interferon beta-1a/therapeutic use , Multiple Sclerosis/drug therapy , Receptors, Antigen, B-Cell/blood , Receptors, Antigen, B-Cell/immunology
9.
Cell Rep ; 39(13): 111019, 2022 06 28.
Article En | MEDLINE | ID: mdl-35767961

Binding of BAFF to BAFFR activates in mature B cells PI3K/AKT signaling regulating protein synthesis, metabolic fitness, and survival. In humans, naive and memory B cells express the same levels of BAFFR, but only memory B cells seem to survive without BAFF. Here, we show that BAFF activates PI3K/AKT only in naive B cells and changes the expression of genes regulating migration, proliferation, growth, and survival. BAFF-induced PI3K/AKT activation requires direct interactions between BAFFR and the B cell antigen receptor (BCR) components CD79A and CD79B and is enhanced by the AKT coactivator TCL1A. Compared to memory B cells, naive B cells express more surface BCRs, which interact better with BAFFR than IgG or IgA, thus allowing stronger responses to BAFF. As ablation of BAFFR in naive and memory B cells causes cell death independent of BAFF-induced signaling, BAFFR seems to act also as an intrinsic factor for B cell survival.


B-Cell Activation Factor Receptor , Memory B Cells , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, Antigen, B-Cell , B-Cell Activating Factor/immunology , B-Cell Activating Factor/metabolism , B-Cell Activation Factor Receptor/immunology , B-Cell Activation Factor Receptor/metabolism , Humans , Memory B Cells/immunology , Memory B Cells/metabolism , Phosphatidylinositol 3-Kinases/immunology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/metabolism
10.
J Immunol ; 208(8): 1937-1946, 2022 04 15.
Article En | MEDLINE | ID: mdl-35379742

Epigenetic mechanisms underpin the elaborate activities of essential transcription factors in lymphocyte development. Special AT-rich sequence-binding protein 1 (SATB1) is a chromatin remodeler that orchestrates the spatial and temporal actions of transcription factors. Previous studies have revealed the significance of SATB1 in T cell lineage. However, whether and how SATB1 controls B cell lineage development is yet to be clarified. In this study, we show that SATB1 is an important factor during splenic B cell maturation. By analyzing SATB1/Tomato reporter mice, we determined the dynamic fluctuation of SATB1 expression in the B cell lineage. Although SATB1 expression decreased to minimal levels during B cell differentiation in the bone marrow, it resurged markedly in naive B cells in the spleen. The expression was dramatically downregulated upon Ag-induced activation. Splenic naive B cells were subdivided into two categories, namely SATB1high and SATB1-/low, according to their SATB1 expression levels. SATB1high naive B cells were less susceptible to death and greater proliferative than were SATB1-/low cells during incubation with an anti-IgM Ab. Additionally, SATB1high cells tended to induce the expression of MHC class II, CD86, and CD83. Accordingly, naive B cells from B lineage-specific SATB1 conditional knockout mice were more susceptible to apoptosis than that in the control group upon anti-IgM Ab stimulation in vitro. Furthermore, conditional knockout mice were less capable of producing Ag-specific B cells after immunization. Collectively, our findings suggest that SATB1 expression increases in naive B cells and plays an important role in their survival and maturation.


Matrix Attachment Region Binding Proteins , Animals , B-Lymphocytes/immunology , Cell Differentiation , Cell Survival , Matrix Attachment Region Binding Proteins/genetics , Matrix Attachment Region Binding Proteins/immunology , Mice , Mice, Knockout , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Spleen/immunology , T-Lymphocytes/immunology , Transcription Factors/genetics , Transcription Factors/immunology
11.
Nat Methods ; 19(4): 449-460, 2022 04.
Article En | MEDLINE | ID: mdl-35396484

Deciphering immune recognition is critical for understanding a broad range of diseases and for the development of effective vaccines and immunotherapies. Efforts to do so are limited by a lack of technologies capable of simultaneously capturing the complexity of adaptive immunoreceptor repertoires and the landscape of potential antigens. To address this, we present receptor-antigen pairing by targeted retroviruses, which combines viral pseudotyping and molecular engineering approaches to enable one-pot library-on-library interaction screens by displaying antigens on the surface of lentiviruses and encoding their identity in the viral genome. Antigen-specific viral infection of cell lines expressing human T or B cell receptors allows readout of both antigen and receptor identities via single-cell sequencing. The resulting system is modular, scalable and compatible with any cell type. These techniques provide a suite of tools for targeted viral entry, molecular engineering and interaction screens with broad potential applications.


Antigens, Viral , Lentivirus , Virus Internalization , Antigens , Antigens, Viral/immunology , Antigens, Viral/isolation & purification , Humans , Immunotherapy/methods , Lentivirus/immunology , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
12.
Cell Rep ; 38(7): 110393, 2022 02 15.
Article En | MEDLINE | ID: mdl-35143756

B cells are important in immunity to both severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and vaccination, but B cell receptor (BCR) repertoire development in these contexts has not been compared. We analyze serial samples from 171 SARS-CoV-2-infected individuals and 63 vaccine recipients and find the global BCR repertoire differs between them. Following infection, immunoglobulin (Ig)G1/3 and IgA1 BCRs increase, somatic hypermutation (SHM) decreases, and, in severe disease, IgM and IgA clones are expanded. In contrast, after vaccination, the proportion of IgD/M BCRs increase, SHM is unchanged, and expansion of IgG clones is prominent. VH1-24, which targets the N-terminal domain (NTD) and contributes to neutralization, is expanded post infection except in the most severe disease. Infection generates a broad distribution of SARS-CoV-2-specific clones predicted to target the spike protein, while a more focused response after vaccination mainly targets the spike's receptor-binding domain. Thus, the nature of SARS-CoV-2 exposure differentially affects BCR repertoire development, potentially informing vaccine strategies.


COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , Vaccination , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , Clonal Evolution , Humans , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Isotypes/genetics , Immunoglobulin Isotypes/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Kinetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Severity of Illness Index , Somatic Hypermutation, Immunoglobulin/immunology , Spike Glycoprotein, Coronavirus/immunology
13.
Nat Commun ; 13(1): 440, 2022 01 21.
Article En | MEDLINE | ID: mdl-35064122

Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100Ahi/HLA-DRlo classical monocytes and activated LAG-3hi T cells are hallmarks of progressive disease and highlights the abnormal MHC-II/LAG-3 interaction on myeloid and T cells, respectively. We also find skewed T cell receptor repertories in expanded effector CD8+ clones, unmutated IGHG+ B cell clones, and mutated B cell clones with stable somatic hypermutation frequency over time. In conclusion, our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19.


Adaptive Immunity/immunology , COVID-19/immunology , Gene Expression Profiling/methods , Immunity, Innate/immunology , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/drug effects , Adaptive Immunity/genetics , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/genetics , Cells, Cultured , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Immunity, Innate/drug effects , Immunity, Innate/genetics , Male , RNA-Seq/methods , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , COVID-19 Drug Treatment
14.
Cell Rep ; 38(4): 110200, 2022 01 25.
Article En | MEDLINE | ID: mdl-35081339

The non-classical Major Histocompatibility Complex class II (MHCII) protein, H2-M, edits peptides bound to conventional MHCII in favor of stable peptide/MHCII (p/MHCII) complexes. Here, we show that H2-M deficiency affects B-1 cell survival, reduces cell renewal capacity, and alters immunoglobulin repertoire, allowing for the selection of cells specific for highly abundant epitopes, but not low-frequency epitopes. H2-M-deficient B-1 cells have shorter CDR3 length, higher content of positively charged amino acids, shorter junctional regions, less mutation frequency, and a skewed clonal distribution. Mechanistically, H2-M loss reduces plasma membrane p/MHCII association with B cell receptors (BCR) on B-1 cells and diminishes integrated BCR signal strength, a key determinant of B-1 cell selection, maturation, and maintenance. Thus, H2-M:MHCII interaction serves as a cell-intrinsic regulator of BCR signaling and influences the selection of the B-1 cell clonal repertoire.


B-Lymphocytes/immunology , Histocompatibility Antigens Class II/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Lymphocyte Activation/immunology , Mice
15.
Anticancer Drugs ; 33(1): e36-e42, 2022 01 01.
Article En | MEDLINE | ID: mdl-34407041

Splenic marginal zone lymphoma (SMZL) is a rare lymphoproliferative disease involving B-cells and affecting elderly patients. SMZL plague peripheral blood and bone marrow, spleen. Lymph nodes are generally spared. SMZL is due to a protracted antigen stimulation of B lymphocytes and of microenvironment leading B-cell to polyclonal and then oligoclonal/monoclonal growth, promoting lymphoproliferation. Integration of the NOTCH2 and NFk-B signaling has been recently identified as the primary mechanism of neoplastic proliferation in SMZL. In total 20% of cases carry mutations in NOTCH2. Although SMZL has an indolent course, progression to diffuse large B-cell lymphoma occurs in about 10-15% of patients. Establishing the prognosis is a key step in disease management, depending on both individual risk and patients' health status. This review discusses tailored treatment of SMZL patients. Progression risk factors include nodal and extra-nodal involvement, peripheral lymphocytosis, anemia and thrombocytopenia. Patients with two or more score points have a median survival of <5 years. Watch and wait strategy is appropriate in low-risk and asymptomatic patients, whereas treatment of symptomatic patients ranges from splenectomy to rituximab monotherapy or associated with chemotherapy.


Antineoplastic Agents, Immunological/therapeutic use , Lymphoma, B-Cell, Marginal Zone/drug therapy , Lymphoma, B-Cell, Marginal Zone/pathology , Precision Medicine/methods , Splenic Neoplasms/drug therapy , Splenic Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Disease Progression , Hepatitis B/pathology , Hepatitis C/epidemiology , Hepatitis C/pathology , Humans , Lymphoma, B-Cell, Marginal Zone/epidemiology , Lymphoma, B-Cell, Marginal Zone/surgery , Lymphoma, Large B-Cell, Diffuse/physiopathology , NF-kappa B/metabolism , Neoplasm Staging , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Risk Assessment , Risk Factors , Signal Transduction , Splenectomy , Splenic Neoplasms/epidemiology , Splenic Neoplasms/surgery , Tumor Microenvironment/physiology
16.
Nucleic Acids Res ; 50(D1): D1244-D1254, 2022 01 07.
Article En | MEDLINE | ID: mdl-34606616

T-cell receptors (TCRs) and B-cell receptors (BCRs) are critical in recognizing antigens and activating the adaptive immune response. Stochastic V(D)J recombination generates massive TCR/BCR repertoire diversity. Single-cell immune profiling with transcriptome analysis allows the high-throughput study of individual TCR/BCR clonotypes and functions under both normal and pathological settings. However, a comprehensive database linking these data is not yet readily available. Here, we present the human Antigen Receptor database (huARdb), a large-scale human single-cell immune profiling database that contains 444 794 high confidence T or B cells (hcT/B cells) with full-length TCR/BCR sequence and transcriptomes from 215 datasets. All datasets were processed in a uniform workflow, including sequence alignment, cell subtype prediction, unsupervised cell clustering, and clonotype definition. We also developed a multi-functional and user-friendly web interface that provides interactive visualization modules for biologists to analyze the transcriptome and TCR/BCR features at the single-cell level. HuARdb is freely available at https://huarc.net/database with functions for data querying, browsing, downloading, and depositing. In conclusion, huARdb is a comprehensive and multi-perspective atlas for human antigen receptors.


Databases, Genetic , Receptors, Antigen, B-Cell/classification , Receptors, Antigen, T-Cell/classification , Software , B-Lymphocytes , Humans , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, T-Cell/immunology , Single-Cell Analysis , Transcriptome/genetics , V(D)J Recombination/genetics
17.
Hum Immunol ; 83(2): 119-129, 2022 Feb.
Article En | MEDLINE | ID: mdl-34785098

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of coronavirus disease 2019 (COVID-19). Great international efforts have been put into the development of prophylactic vaccines and neutralizing antibodies. However, the knowledge about the B cell immune response induced by the SARS-CoV-2 virus is still limited. Here, we report a comprehensive characterization of the dynamics of immunoglobin heavy chain (IGH) repertoire in COVID-19 patients. By using next-generation sequencing technology, we examined the temporal changes in the landscape of the patient's immunological status and found dramatic changes in the IGH within the patient's immune system after the onset of COVID-19 symptoms. Although different patients have distinct immune responses to SARS-CoV-2 infection, by employing clonotype overlap, lineage expansion, and clonotype network analyses, we observed a higher clonotype overlap and substantial lineage expansion of B cell clones 2-3 weeks after the onset of illness, which is of great importance to B-cell immune responses. Meanwhile, for preferences of V gene usage during SARS-CoV-2 infection, IGHV3-74 and IGHV4-34, and IGHV4-39 in COVID-19 patients were more abundant than those of healthy controls. Overall, we present an immunological resource for SARS-CoV-2 that could promote both therapeutic development as well as mechanistic research.


Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged, 80 and over , Antibodies, Neutralizing/immunology , Female , Humans , Immunoglobulin Heavy Chains/immunology , Male , Middle Aged
18.
J Immunol ; 208(2): 514-525, 2022 01 15.
Article En | MEDLINE | ID: mdl-34911772

Upon encounter with Ag, B cells undergo a sequential process of differentiation to become Ab-secreting plasma cells. Although the key drivers of differentiation have been identified, research has been limited by the lack of in vitro models recapitulating the full process for murine B cells. In this study, we describe methodology using BCR or TLR ligation to obtain plasma cells that are phenotypically mature, have exited cell cycle and express a gene signature concordant with long-lived plasma cells. Dependent on the initial stimuli, the transcriptomes also show variation including the enhanced expression of matrisome components after BCR stimulation, suggestive of unique functional properties for the resultant plasma cells. Moreover, using the new culture conditions we demonstrate that alternative promoter choice regulating the expression of the master transcription factor Blimp-1/Prdm1 can be observed; when the canonical B cell promoter for Prdm1 is deleted, differentiating B cells exhibit flexibility in the choice of promoter, dictated by the initiating stimulus, with preferential maintenance of expression following exposure to TLR ligation. Thus our system provides a readily tractable model for furthering our understanding of plasma cell biology.


Cell Differentiation/immunology , Plasma Cells/cytology , Plasma Cells/immunology , Positive Regulatory Domain I-Binding Factor 1/genetics , Receptors, Antigen, B-Cell/immunology , Animals , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Transcriptome/genetics
19.
J Virol ; 96(4): e0160021, 2022 02 23.
Article En | MEDLINE | ID: mdl-34878902

A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2-reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.


Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , B-Lymphocytes/immunology , COVID-19/genetics , Immunoglobulin G/genetics , Receptors, Antigen, B-Cell/genetics , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Humans , Immunoglobulin G/immunology , Receptors, Antigen, B-Cell/immunology
20.
J Immunol ; 208(2): 293-302, 2022 01 15.
Article En | MEDLINE | ID: mdl-34930782

A considerable proportion of peripheral B cells is autoreactive, and it is unclear how the activation of such potentially harmful cells is regulated. In this study, we show that the different activation thresholds or IgM and IgD BCRs adjust B cell activation to the diverse requirements during development. We rely on the autoreactive 3-83 model BCR to generate and analyze mice expressing exclusively autoreactive IgD BCRs on two different backgrounds that determine two stages of autoreactivity, depending on the presence or absence of the cognate Ag. By comparing these models with IgM-expressing control mice, we found that, compared with IgM, IgD has a higher activation threshold in vivo, as it requires autoantigen to enable normal B cell development, including allelic exclusion. Our data indicate that IgM provides the high sensitivity required during early developmental stages to trigger editing of any autoreactive specificities, including those enabling weak interaction with autoantigen. In contrast, IgD has the unique ability to neglect weakly interacting autoantigens while retaining reactivity to higher-affinity Ag. This IgD function enables mature B cells to ignore autoantigens while remaining able to efficiently respond to foreign threats.


Autoantigens/immunology , B-Lymphocytes/immunology , Clonal Anergy/immunology , Immunoglobulin D/immunology , Receptors, Antigen, B-Cell/immunology , Animals , Antibody Specificity/immunology , Cell Line , Gene Knock-In Techniques , Immunoglobulin Heavy Chains/genetics , Immunoglobulin M/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
...